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We study in detail the numerical techniques needed to minhnim the computation 
time. in calculations of the transport properties of a dilute gas. We iterate all numerical 
proceases until the results are uniformly correct to the accuracy prescribed by the user, 
Thus in 1 min. we may calculate a set of transport properties to an accuracy of 1 in 100, 
but 10 min. may be. needed for an accuracy of 1 in 10,000. 

The principal numerical diilties encountered are centered around the evaluation 
of some singular de&he integrals. We eliminate the singularities by changes of variable 
and evaluate the resulting well behaved integrals using the Clenshaw-Curtis method. 
We found this to be the most efficient quadrature method, mainly because of its accuracy 
and its error estimates. For the same reasons, we adopted the Chebyshev polynomial 
curve fitting techniques for interpolation rather than the Lagrangian or Spline method. 

1. IN-I-RODUCTI~N 

In the Chapman-Enskog theory [l] of a dilute gas, the transport properties of 
the gas can be expressed in terms of a set of collision integrals W8)(T). These are 
functions of the temperature T, and they depend on the interaction potentials 
between the atoms or molecules in the gas. A number of successful methods for 
calculating these collision integrals have been described in the literature ([2]-[8]), 
but we believe that the method we describe here is: (1) considerably more efficient 
then anything previously published; and (2) more reliable because we check the 
accuracy of every step in the calculation. It is also easier to use, takes up less 
storage space, and the facility enabling the user to specify the accuracy which he 
needs should save him a great deal of computer time, especially in cases when he 
does not need great accuracy. The program is so fast that it is possible to calculate 
a set of collision integrals in only about 1 min on our ICL 1907 computer, to an 
accuracy of 1%. For an accuracy of 0.1% it takes about 3 min. 

* This work was supported by the National Aeronautics and Space Administration under 
Contract NSR-52-112-002. 
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TRANSPORT CALCULATIONS 329 

In the following, we describe, mainly, the final methods we adopted in the pro- 
gram, and say little about the many less efficient or less reliable methods we tried. 
These are discussed in more detail in a thesis by O’Hara [9]. 

1.1. Theory 

The collision integral sZ(l S’(T) takes the form [2] 

LW)(T) = i (%)I’” 1,” e-*x8+‘Qz(kTx) dx, (1) 

in which p is the reduced mass of the two interacting systems and k is Boltzmann’s 
constant. In practice, the integers 1 and s are small, usually less than 6. The collision 
cross section QC(E) depends on the initial relative energy E and is given by 

et(E) = 27r jm b(1 - cosl x) db, (2) 
0 

where b is the impact parameter and x is the classical deflection angle; 

I 
00 

x(b, E) = rr - 26 
7m 

in which r,,, , the classical turning point, is the outermost zero of 

F(r, b, E) = 1 - V(r)/E - b2/r2. (4) 

1.2. Di$iculties 

The problem, thus, reduces to the evaluation of the triple integral represented 
by Eq. (l)-(3). Difficulties arise because of certain singularities on or near the 
interval of integration in Eq. (2) and (3), which we will discuss later. Therefore, 
our main difficulty is the calculation of the cross sections Q,(E). The evaluation of 
the integral in Eq. (1) is relatively easy. 

Fortunately, we can make one immediate simplification by noting that Ql(,C) is 
a single-valued function of the single real variable E for each value of 1. Thus, 
Q$(E) can be determined at a discrete set of energies Ei , and further cross sections 
found quickly by interpolation in the first set. It is not, therefore, necessary to 
calculate a new set of cross sections, Ql(E), for each temperature, T. The problem 
is now reduced to: (a) the evaluation of a set of awkward double integrals repre- 
sented by Eq. (2) and (3); (b) choosing the energies Eat which these cross sections 
are best evaluated; (c) interpolating in these cross sections, and (d) evaluating a set 
of simple integrals represented by Eq. (1). 

581/5/2-x1 



330 O'HARA AND SMITH 

We add a condition to all our numerical processes: the program reads in a per- 
mitted relative error or accuracy, E; the final collision integrals must be correct to 
this accuracy. Also, as far as possible, the amount of computation should be 
minimized to ensure the accuracy of E and no higher accuracy. Thus, quick results 
to an accuracy 0.01, or necessarily longer calculations to an accuracy 0.0001, 
should both be possible. This means that we can only use numerical processes which 
allow us to estimate their accuracy reliably. 

We begin by looking at the problem of the evaluation of a well-behaved integral 
and of the integral in Eq. (1). Next, we show how we remove the singularities in the 
double integral, and we, finally, consider the problem of interpolation. 

2. WELL BEHAVED INTEGRALS 

2.1. Clenshaw-Curtis Method 

We assume that we have reduced an integral by changes of variable to the form 

Z = s’; F(t) dt, (51 
-1 

where F(t) is well-behaved in and near (- 1, + 1 j. There are endless numbers of 
methods for evaluating such an integral, but when we can choose the abscissas or 
pivots at any points in the interval including the end points, and when we are 
asked to obtain an answer with a minimum number of function evaluations to an 
accuracy, l , then the choice is limited, and one method is outstanding: the 
Clenshaw-Curtis method ([lo], [l 11). Because this method is not well-know, we 
will describe it briefly. 

The integrand F(t) is expanded in a finite Chebyshev series 

where the double prime means that the first and last term are halved in the summa- 
tion, and where 

and the series is integrated term by term. A quadrature results: 
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where 

2 
hsN = (-qp---J 

lkN sin[(2i - 1) 7rzr/N] 
+ $ sin z C 

*=I 2i- 1 for1 <s<N-1, 
_ ^ 

hoN = hNN = (N2 - 1)-i. 
(9) 

These weights are easily computed at the beginning of the program for any N 
needed. 

The quadrature in Eq. (8) has several advantages. It is extremely accurate 
(nearly as accurate as Gaussian quadratures), partly because a Chebyshev series 
converges so quickly and partly because it can be shown [1 1] that not only are the 
contributions to the integral from the harmonics r = 0 to r = N, in Eq. (6), 
evaluated, but most of the contribution to the integral from the higher harmonics 
between N + 1 and 2N - 1 are also included. Hence, the precision is nearly that 
of a Gaussian quadrature, 2N - 1. But the method has a number of advantages 
over Gaussian quadratures. First of all, the function evaluations in the 9-point 
quadrature (N = 8) are common with the 17-point quadrature (N = 16). So we 
can double the number of points without losing function evaluations (as in 
Simpson’s rule). An even bigger advantage is the range of possible error estimates 
D 11. 

Of these, we adopted the estimate 

where 

UN-2r = ~~~(-l)~~(COs~)cos~. 

This is easily computed since it depends only on the function evaluations needed 
in the quadrature. Since it is the maximum of three quantities, the possibility of one 
or two of them being accidentally very small is ruled out. It is shown in [II] that 
EN is reliable, provided 

When this test failed, we continued the calculation till EN was less than E/IO, rather 
than E. This process rarely fails to give us an error bound, but for badly behaved 
integrals, where experience shows it does fail, we use, in place of EN , the “con- 
servative” error estimate I 1, - IN,2 I . In the end, we were able to ensure, by 
appropriate changes of variable, that none of our integrals was this badly behaved. 

581/5/2-l I* 
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Because of the lack of similar error estimates in Gaussian quadratures, the 
Clenshaw-Curtis method is preferred. Other quadratures, such as Romberg’s 
algorithm, are too inefficient, for our purposes, to be comparable to the Clenshaw- 
Curtis method. A recent variation on Gaussian quadratures due to Patterson [12] 
is the nearest competitor to the Clenshaw-Curtis method, but we think that it, too, 
fails because of the lack of a sufficiently good error estimate. 

2.2. Infinite Intervals 

The integrals in Eq. (l)-(3) are over an infinite range. To put them in the form 
where we can use the Clenshaw-Curtis formula, we must change the variable. We 
illustrate a difficulty by writing Eq. (1) in the form 

I 

m  
Q1.s) = 

g(x) dx. (11) 
0 

One possible change of variable is given by 

ax = (1 - t)/(l + t). (12) 

For any 01, this changes the integral in Eq. (11) into the form of Eq. (5), but the 
efficiency of the resulting quadrature will vary greatly with different values of 01. 
For example, for very large LX, a sharp peak will appear near t = - 1, and for very 
small 01, a peak appears near t = + 1. The choice of the correct 01 presents a 
difficulty, but, fortunately, we can often use some analytic information to deter- 
mine 01, as we now show. 

2.3. The Integral in Eq. (1) 

In the case of Eq. (I), the integrand typically takes the form shown in Fig. 1. 
Because Qz(E) varies slowly with E, the shape of this i&grand is dominated by the 
term (e-“x8+> which has a peak at s + 1. We, therefore, use x = s + 1 as an 
approximation to the position of the peak in the integrand. We split the integral in 
two parts at s + 1, and integrate the second part by changing the variable to 
y = (S + 1)/x (effectively, we are allowing the position of the peak to determine 
the (Y parameter for us): 

e-zxS+lQl(kTx) & + (S + 1) /: e-zx8+1$kTx’ dy . (13) 

The first integral is now readily put in the form of Eq. (5) by a linear transformation. 
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Because of the t+ term, we know that the integrand and all of its derivatives are 
zero at y = 0; thus, the reflection of the integrand into the interval (- 1,O) pro- 
duces a smooth even function over the whole interval (- 1, + 1). We can use this 
information by adopting only the positive Clenshaw-Curtis abscissas and the 
corresponding weights in the evaluation of this second integral. 

I I I I I I I I 

FIG. 1. The integrand in Eq. (1) for the (12-6) potential when 1 = 1 and T = 0.1/k. 

TABLE 1 

Errors in Quadratures Evaluating the Integrals in JZq. (13) for the Lennard-Jones 6-12 Potential, 
Where n is the Number of Intervals 

n Error n Enor 

8 0.0011 4 0.2394 
16 O.WO8 8 0.0103 
32 0.0001 16 0.0004 

Integral 10.2165 Integral 12.4853 
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Note that since the abscissas in the Clenshaw-Curtis quadrature are concentrated 
near the ends of the range, the above changes of variable have effectively concen- 
trated the abscissas mainly in the region of the maximum in the integrand. 

The accuracy of these methods is demonstrated in Table I for the two integrals 
in Eq. (13). A number of other changes of variable was tried, but, as expected, 
these were not as accurate as the above. 

3. CROCK SECTIONS FOR A REPULSIVE POTENTIAL 

3.1. Cross Section Integral 

The calculation of the cross section Q@), by evaluating the double integral in 
Eqs. (2) and (3), is straightforward when the intermolecular potential is repulsive 
for all values of r. Then, the angle x falls monotonically from ?r to zero as b increases 
from zero to infinity. There is then only one maximum in the integrand 
b( 1 - cos! x), in Eq. (2) near the impact parameter b’, where x = &r. We, therefore, 
compute b’, approximately, by scanning x at different values of b and using the 
fact that b’ decreases as the energy, E, increases to start us on each scan. On the 
average, b’ is computed approximately after only 4 or 5 calculations of angle x. 

Once we have found b’, we use the method in (2.3) to evaluate the integral-with 
one difference. In the integral from b’ to infinity, we could have used the positive 
abscissas as we do in (2.3). However, this concentrates the abscissas near b’ with 
few abscissas at large values of b. This is ideal for the integrand in Eq. (13) because 
of its decreasing exponential term, but in the integral of Eq. (2), particularly when 
the potential falls to zero slowly as r increases to infinity, a large part of the integral 
comes from large b values. Therefore, we adopted the change of variable 

y = 2(b’/b) - 1, (14) 

and the integral becomes 

j-- b(1 - cosz x) db = ,:’ b(1 - cosz x) db + & ,;I bs( 1 - cos’ x) &. (15) 
0 

Clenshaw-Curtis quadratures are used on both integrals once the range in the 
first integral is changed to (- 1, + 1). The abscissas are now concentrated near b’ 
and they extend to large values of b. 

This method has proved to be efficient and reliable. Often, only 9 abscissas are 
needed to ensure the evaluation of each integral to an accuracy of 1 in 1000. 
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3.2. The Angle Integral 

335 

The calculation of the deflection angle x is also relatively straightforward for a 
repulsive potential. The pole at r, , [the classical turning point, in the integrand of 
Eq. (3)] can be eliminated by Gauss-Mehler quadratures [13] or by a change of 
variable, such as cos&r(x + I)] = r,Jr [14]. Then Eq. (3) becomes 

This quadrature converges a little less slowly than the Gauss-Mehler quadrature 
but it is still preferable because of the difficulty of finding a good error estimate in 
the Gauss-Mehler method. Also, because the abscissas in successive Gauss-Mehler 
quadratures do not overlap, we lose all our previous function evaluations each 
time we change the order of the quadrature. 

3.3. The Classical Turning Point 

The classical turning point, r,,, , can be found by inverse interpolation [6] for any 
impact parameter, b. Because the integrand in Eq. (3) is infinite at r,,, , it is impor- 

6- I I I 

IO ‘0 I5 20 
r 

FIG. 2. The term F(r, b, E) in the integrand of Eq. (3), at a value of b near b,, . Orbit& occurs 
at b = b. because F(r, 6, , E) touches the axis at r = r, . The integral in Eq. (3) then diverges. 
For energies nearer E, , the shape- would be similar but the maximum near r, would be smaller. 
Here, EIE, = *lo-‘. 
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tant that we calculate r,,, very accurately. We, therefore, adopt the following 
process: we begin with the given value of b, we calculate an approximate r,; we 
recalculate a new b from the precise formula 

b” = r,(l - V(rm)/E)li2, (17) 

and then we calculate x(b”, E), rather than ,y(b, E). Small errors in r,,, will result in 
a small difference between b and b”, and a resulting small difference between 
x(b”, II) and x(b, E) [much smaller than the error obtained by using the slightly 
incorrect r, and the correct b in Eq. (14)]. The necessity for calculating r,,, accura- 
tely is demonstrated in Fig. 2 by the large slope of F(r, b, E) at r = r, . This term 
is in the denominator of the integral from which we calculate angle x. 

4. CROSS SECTIONS AT ORBITING ENERGIES 

When the interatomic potential has a minimum, the cross sections are much more 
difficult to calculate because of a phenomenon known as orbiting (the particles 
orbit about one another). Mathematically, this occurs because of a nonintegrable 
pole in the integrand of Eq. (3) at what is called the orbiting impact parameter bO . 
This is illustrated in Fig. 2, where the term F(r, b, E), in the denominator of the 
integral of Eq. (3), is drawn for b near b, . The curve corresponding to the impact 
parameter, bO , just touches the axis at r = r, , so F(r, b,, , E) has a zero of order 2 
at r = r,; the integrand Eq. (3) has a pole of order 1, and x = - co. The integrand 
b(1 - COG x) then has an infinite number of oscillations in the region of b, . (We 
illustrate the behavior of this integrand in Fig. 3.) 

The orbiting phenomenon illustrated in Fig. 2 only occurs at low energies: when 
E is large the term V(r)/E is small, compared to b2/r2, and the slope of F(r, b, E) is 
always positive as it crosses the axis. There is a critical energy, EC, below which 
orbiting occurs and above which it cannot occur; but, at energies just above EC, 
there are still a lot of oscillations in the integrand b(1 - cosl x) of Equation (2), 
although there is no singularity. Thus, we find that we have to consider three 
energy regions separately: 1. energies below EC; 2. energies just above EC (which 
we took to be E, to 10 EJ; and 3. energies well above E, . 

4.1(a) The Angle. 

4.1. Region 1, E < EC 

When orbiting occurs, both the integral for the angle and the integral for the 
cross section give us trouble. The integral for x in Eq. (3) is particularly difficult for 
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b less than, but close to b. . By examining Fig. 2, it is apparent that the integrand 
has a peak near r, , as well as a pole at r,,, . This peak makes the simple method 
described for the repulsive potential converge slowly. Because the abscissas in the 
Clenshaw-Curtis method are concentrated near the ends of the range, we split the 
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FIG. 3. The integrand, b(l - cos x) in Eq. (2) at an orbiting energy. There is an in&he 
oscillation at 6 = bO . 
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integral in Eq. (16) at the value x = x0 corresponding to r = r, . The peak occurs 
somewhere near x0 . Then x(b, E) becomes, 

where g(x) is the integrand in Eq. (16). 
In the first integral we introduce the change x = (x0 + 1) cos 0 - 1 to concentrate 
the pivots near the peak at x0 . A similar change is introduced into the second 
integral. Both of the resulting integrals are now put in the form in Eq. (5) by linear 
variable changes and evaluated by Clenshaw-Curtis quadratures. In Table 2 the 

TABLE 2 

A Comparison of the Exrors in Two Methods of Evaluating the Angle x 
at a Value of b Close to b. for the (6-12) Potential 

In method (l), the integral is evaluated in the same way as for a repulsive 
potential, without splitting the integral into two parts. In method 2, the 
integral is spit near r = r, . Here E = 0.23& and b = 0.991b0. n is the 

number of abscissas 

II Method 1 

9 0.24369 

17 0.01922 
33 0.01059 

65 0.00015 

Method 2 

- 

0.00074 

o.OWO5 

O.OWOO 

efficiency of this method is compared with the method in Eq. (16) for a value of b 
less than and close to b. . Clearly, this is a case when splitting the integral pays 
dividends. We adopt this method for all b < b, . For b > b, , there is no difficulty 
and the method described earlier for a repulsive potential is used. 

4.1 (b) The Cross Section 

The integral for the cross section in Eq. (2) is even more ditlicult. Because x 
diverges at 6, , the integrand has an in&rite number of oscillations near b. . This is 
illustrated in Fig. 3. We break the integral into two parts at b. . In the integral from 
0 to b,, , we note that the in&grand is largest and it varies most quickly near b. . In 
addition, at bO , we cannot calculate the integrand. We, therefore, seek a change of 
variable that concentrates the abscissas near b,, and such that the new integrand is 
zero at the end corresponding to b. . One (of many) such changes of variable is 
b = b. COS[&T(X + l)]. 
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so 

1: b(1 - cosz x) db = &rb,2 /I: sin[&r(x + l)](l - cosz x) dx. (19 

The singularity is now at x = - 1 where the integrand is zero. Thus, the singularity 
is effectively eliminated. This change of variable works extremely well and trans- 
forms an almost impossible integral into one which we can readily and quickly 
evaluate. Typically, we obtain three figure accuracy with 17 Clenshaw-Curtis 
quadrature points. 

In the case of the integral from b,, to infinity, we note that if we change the 
variable from b to r,,, then since dbldr,,, = 0 at b = b, , the new integrand is also 
zero at b, and we have eliminated the singularity [3]: 

The difficulty with this change of variable is that it introduces the derivative of the 
potential, often not easily calculated. For this reason we did not adopt this change 
of variable generally although it is convenient in this case. Other variable changes 
should give as good results, for example, the change leading to Eq. (19). 

The new integral in Eq. (20) can now be evaluated by changing the variable so 
that the interval is (- 1, + l), e.g., 

r - 2r& + 1). m- (21) 

But we found that x falls to zero so quickly as b increases that the integrand is still 
concentrated near the end point x = + 1. We, therefore, made yet another change 
of variable to concentrate the abscissas even closer to b, : 

so that 

r - dsin(W~ m- (22) 

,, b(1 - cod x) a!b = &T 1: r,,, [ 1 - y - rm yk)] ’ s~2c~~ ~0s +JI dy. 

(23) 
The integrand and all of its derivatives are zero at y = 0 so we can use only the 
positive Clenshaw-Curtis points in the quadrature. This proved to be the most 
successful of a number of methods tried. We typically obtained an accuracy of 
0.1% or less with only 17 abscissas. 
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4.2. Region 2, EC < E < lOE, 

For energies just above the critical energy, EC , the angle x remains finite and no 
orbiting occurs. However, x does fall to a negative minimum value (the rainbow 
angle) and the integrand b(1 - coslx) has a number of oscillations in the region of 
this minimum; the closer E is to EC the more oscillations there are. In the program, 
we find the approximate position of the minimum angle, b = b, , quickly by 
scanning x at different b and using the information that b, decrease sas Ehmeases 
and that b, is less than b,, at E, . Since most of the oscillations occur near b, and 
since we, therefore, wish to concentrate our abscissas near b, , we break the integral 
into two parts at b, . 

The integral from b, to infinity we evaluate in the same way as we evaluated the 
equivalent integral in 4.1(a), with b,, replaced by b, . In this, db/&,,, is no longer 
zero, but it is small at b, and the transformation from b to r, is still advantageous. 
For the same reason it can also be used with advantage in the first part of the 
integral from 0 to b, , and, indeed, we found this the most efficient method of 
evaluating this integral. Thus, our whole integral becomes 

I a, b(l - cosz x) db = fin’ b g (1 - cosl x) dr, 
0 +-ml (11 

+ ib 1: b -$ (’ s;am;;) cos +ry dy, w  

in which r,, and r,, are the turning points corresponding to b = 0 and b = b, , 
respectively; y is defined by Eq. (22), with r, replaced by r,, , and 

b(o%/dr,) = rm[l - WdIE - ~J"hnMW1. (25) 

A simple linear change of variable puts the first integral in the form of Eq. (5) for 
the Clenshaw-Curtis quadrature and the second integral uses only the positive 
abscissas. 

The angle x is readily computed in all cases by the method used for the repulsive 
potential in (3.2). 

4.3. Region 3, E -C lOE, 

Well above the critical energy, the minimum (rainbow) angle is small and there 
are just two bumps in the integrand b(l - cos’ x); one, when x is near &H, as for the 
repulsive potential, and the second at the minimum angle. At very large energies 
(E > 1000 EC) the contribution from this second bump is small and we use the 
same routines as we have described for the repulsive potential in 3.1 which con- 
centrate the abscissas near the hrst bump only. 
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At intermediate energies (lo& < E, < lOOOE,) we split the integrand at b, 
(which we note is nearly equal to r, at E = EC in all cases) and then adopt the same 
routines as we use for the repulsive potential, with b’ replaced by b, . 

5. INTERP~LA~~N 

As we have explained in our introduction, the most efficient way of calculating 
a set of collision integrals sd(z*8)(T), for different temperatures T, is to calculate an 
initial set of cross sections Qz(Ei) and interpolate for the many further cross 
sections needed. The range over which the energies, EC, must be chosen is between 
Emin and Emax: 

E min = kTmtnxmin; Emax = kTmaxxmax , (26) 

where Tan and Tmp;x are the minimum and maximum temperatures and Xmin and 
xmax are the minimum and maximum abscissas needed to evaluate the integral 
in Eq. (1). Usually Emax is many orders of magnitude larger than Emin , so this calls 
for a logarithmic scale in our choice of energies. Further, plots of log[Q,(E)] 
against log E are much smoother functions of log E than are plots of Qz(E) against 
log E. Not surprising then is our discovery that interpolation in tables of log 
[Qz(E)] gives better results than in tables of Qz(E). We illustrate the smoothness 
of log[Q,(E)] against log(E) in Fig. 4. 

T------ 

-6 -4 -2 0 2 4 6 8 

Ln (El 

I I I I 

FIG. 4. The cross-sections &(E) as a function of energy. This illustrates that a log-log plot is 
smooth and that there are three energy regions: E < EC; E, < E < lOE,; lOE, < E. 
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Figure 4 also shows that the plots of log[Q,(E)] fall into the three regions we 
mentioned in the last section: Region (1): E < EC, Region 2: E, -=c E < IOE, , 
Region 3: lOE, < E. We curve fitted or interpolated in these three regions, separa- 
tely. 

There were three different methods available for the interpolation: 

(a) Lagrangian (Aitken’s) method. 
(b) Cubic Splines [15]. 
(c) Polynomial curve fitting. 

Method (b) we found gave slightly more accurate answers than piecewise cubic 
Lagrangian interpolation, but less accurate answers than, say, quintic Lagrangian 
interpolation. It also used more storage space since the second derivative at each 
pivot must be stored. Its biggest drawback is the lack of a facility for estimating 
the error realistically, and, in our case, this is essential since we wish to double the 
number of energies in our table in successive steps until we can interpolate to the 
accuracy we require. For this purpose, Lagrangian interpolation is better because 
we can examine the interpolates obtained using parabolic, cubic, quartic, etc. fits 
to adjacent points, and use these to estimate the error at a number of energies 
chosen at random in the range. But there are still inaccuracies, especially at the ends 
of the range. 

The third choice is a polynomial curve fit of all the points in the range. Here, the 
position of the pivots in the range is crucial. Equidistant pivots give good answers 
in the middle of the range and poor answers (or divergent answers) at the ends of 
the range [16]. But if the range of integration is changed to - 1 < x < + 1, and 
the pivots chosen at the points 

Xk = cos(k7r/N), O<k<N, (27) 

then the set of polynomials orthogonal over these pivots is the set of Chebyshev 
polynomials, T,(x). The resulting curve fit converges quickly as N increases and 
gives uniformly accurate results over the whole range. 

We can determine this curve fit approximately as follows. We write 

f(x) = 2 cJ,(x), 
r=0 

where the coefficients c, are easily calculated from the relation 

(29) 
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Since 1 T&r)/ < 1 and the Chebyshev series converges rapidly we can approximate 
the error by I cN I + 1 c&l I with some confidence. 

In our case, we are integrating over the functions which we are curve fitting and 
the contributions from the high order harmonics T,(X) will tend to cancel out 
because they oscillate considerably. Therefore, for our purposes, we found em- 
pirically that it was sufficient to use as our error estimate 

This method worked so well that we needed only five cross sections in Region 1, 
nine in Region 2, and five in Region 3 to ensure that our interpolated collision 
integrals were correct to 1%. A typical set of coefficients are given in Table III. 

TABLE 3 

A Typical Set of Chebyshev Coefficients Fitting ln[Q, (I?)] Against In(E) in the 
Three Energy Regions. These are for the 6-12 Potential with 6 = 1 % 

Coefficients 

Region 1 Region 2 Region 3 

CO 7.5353 3.0050 0.2521 

Cl - 1.6523 -0.5599 -0.9061 

G -0.oo90 0.0837 -0.0064 

G -0.0070 0.0213 -0.0038 

C4 -0.0099 -0.0225 0.0058 

G 0.0091 

G -0.0015 

G -0.0016 

C, 0.0024 

6. CONCLUSION 

We have described how we optimised each step in our calculations. The resulting 
program is extremely efficient. The times needed to calculate for a Lennard-Jones 
(6-12) potential, a complete set of cross sections 1 6 I ,< 6 or a set of collision 
integrals 1 < I, s < 6 at 40 different temperatures is given in Table IV for different 
required accuracies E. The actual errors were less than the tolerated errors E in all 
cases we tested. 
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TABLE 4 

A Comparison of the Times Needed (a) to Calculate a Complete Set of Cross- 
Sections 1 < I < 6 and (b) to Calculate a Set of Cross-Sections and a Complete 
Set of Collision Integrals 1 < 1, s < 6 for 40 Temperatures for Different Accuracies 

(6) [Also Shown is the Typical Actual Error Obtained (err)] 

(4 0.01 0.001 O.oool O.ooool 
(a), mh 4 54 20 
(b), min 2; 44 10 29 

ted 0.002 o.ooo3 o.oooo3 - 

We have checked the program by running it for the 12-6-3 and 12-65 poten- 
tials for which results are available ([4], [ 171) and for the potential e-“/r. The 
program of Smith and Munn [6], probably the best previous general program, 
gave incorrect results for this last potential at high temperatures ([7], [81). Our 
program gave the correct results but it also sent out an error message warning that 
the results were not entirely reliable at high temperatures. In this case, the poten- 
tial effectively falls off very slowly at high energies and this severely tests any 
transport program. We were pleased that our program dealt with it so well. 

We are reasonably convinced that the efficiency and reliability of our program 
cannot be greatly improved. 
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